Histograms of Oriented 3D Gradients for Fully Automated Fetal Brain Localization and Robust Motion Correction in 3 T Magnetic Resonance Images
نویسندگان
چکیده
Fetal brain magnetic resonance imaging (MRI) is a rapidly emerging diagnostic imaging tool. However, automated fetal brain localization is one of the biggest obstacles in expediting and fully automating large-scale fetal MRI processing. We propose a method for automatic localization of fetal brain in 3 T MRI when the images are acquired as a stack of 2D slices that are misaligned due to fetal motion. First, the Histogram of Oriented Gradients (HOG) feature descriptor is extended from 2D to 3D images. Then, a sliding window is used to assign a score to all possible windows in an image, depending on the likelihood of it containing a brain, and the window with the highest score is selected. In our evaluation experiments using a leave-one-out cross-validation strategy, we achieved 96% of complete brain localization using a database of 104 MRI scans at gestational ages between 34 and 38 weeks. We carried out comparisons against template matching and random forest based regression methods and the proposed method showed superior performance. We also showed the application of the proposed method in the optimization of fetal motion correction and how it is essential for the reconstruction process. The method is robust and does not rely on any prior knowledge of fetal brain development.
منابع مشابه
An Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network
Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image arti...
متن کاملA Method for Body Fat Composition Analysis in Abdominal Magnetic Resonance Images Via Self-Organizing Map Neural Network
Introduction: The present study aimed to suggest an unsupervised method for the segmentation of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in axial magnetic resonance (MR) images of the abdomen. Materials and Methods: A self-organizing map (SOM) neural network was designed to segment the adipose tissue from other tissues in the MR images. The segmentation of SAT and VA...
متن کاملOptimization of clinical target volume delineation using magnetic resonance spectroscopic imaging (MRSI) in 3D conformal radiotherapy of prostate cancer
Background: For the purpose of individual clinical target volume assessment in radiotherapy of prostate cancer, MRSI was used as a molecular imaging modality with MRI and CT images. Materials and Methods: The images of 20 prostate cancer patients were used in this study. The MR and MRSI images were registered with CT ones using non-rigid registration technique. The CT based planning (BP), CT/MR...
متن کاملComparison of Two Quantitative Susceptibility Mapping Measurement Methods Used For Anatomical Localization of the Iron-Incorporated Deep Brain Nuclei
Introduction Quantitative susceptibility mapping (QSM) is a new contrast mechanism in magnetic resonance imaging (MRI). The images produced by the QSM enable researchers and clinicians to easily localize specific structures of the brain, such as deep brain nuclei. These nuclei are targets in many clinical applications and therefore their easy localization is a must. In this study, we aimed to i...
متن کاملFabrication of New 3D Phantom for Measuring Geometric Distortion in Magnetic Resonance Imaging System
Introduction: Geometric distortion is a major shortcoming of magnetic resonance imaging (MRI), which has an important influence on the accuracy of volumetric measurements, an important parameter in neurology and oncology. Our goal is to design and construct a new three- dimensional phantom using a 3D printer in order to measure geometric distortion and its reproducibility in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017